\[ \newcommand{\nRV}[2]{{#1}_1, {#1}_2, \ldots, {#1}_{#2}} \newcommand{\pnRV}[3]{{#1}_1^{#3}, {#1}_2^{#3}, \ldots, {#1}_{#2}^{#3}} \newcommand{\onRV}[2]{{#1}_{(1)} \le {#1}_{(2)} \le \ldots \le {#1}_{(#2)}} \newcommand{\RR}{\mathbb{R}} \newcommand{\Prob}[1]{\mathbb{P}\left({#1}\right)} \newcommand{\PP}{\mathcal{P}} \newcommand{\iidd}{\overset{\mathsf{iid}}{\sim}} \newcommand{\X}{\times} \newcommand{\EE}[1]{\mathbb{E}\left[{#1}\right]} \newcommand{\Var}[1]{\mathsf{Var}\left({#1}\right)} \newcommand{\Ber}[1]{\mathsf{Ber}\left({#1}\right)} \newcommand{\Geom}[1]{\mathsf{Geom}\left({#1}\right)} \newcommand{\Bin}[1]{\mathsf{Bin}\left({#1}\right)} \newcommand{\Poi}[1]{\mathsf{Pois}\left({#1}\right)} \newcommand{\Exp}[1]{\mathsf{Exp}\left({#1}\right)} \newcommand{\SD}[1]{\mathsf{SD}\left({#1}\right)} \newcommand{\sgn}[1]{\mathsf{sgn}} \newcommand{\dd}[1]{\operatorname{d}\!{#1}} \]
2.5 \(\chi\)2\(, t\) and \(F\) distribution
Exercises
Exercise 2.10 Suppose \(X_1, X_2, \dots, X_n\) be \(\rm iid\) random sample from a \(N(0,1)\) population and \(Y_1, Y_2, \dots, Y_{m}\) be another set of \(\rm iid\) random sample from a \(N(0,1)\) population. Let \[\begin{align*} V = \sum_{i=1}^{m}Y_{i}^2 \qquad \textsf{ and } \qquad U = \sum_{i=1}^{m}X_{i}^2 \end{align*}\]
- (\(\chi^2\) with \(n\) degrees of freedom: \(\chi_n^2\)) Show that \(U\) has \(\chi_n^2\) distribution, That is the probability distribution function of \(U\) is given by, \[\begin{equation} \tag{2.7} f_{U}(u) = \frac{2^{-\frac{n}{2}}}{\Gamma\left( \frac{n}{2} \right)}u^{\frac{n}{2} - 1}e^{-\frac{u}{2}} = \begin{cases} \frac{2^{-\frac{n}{2}}}{\left( \frac{n}{2} - 1 \right)!}u^{\frac{n}{2} - 1}e^{-\frac{u}{2}} & \textsf{ when $n$ is even } \\ \frac{2^{n-\frac{n}{2}-1} \left( \frac{n-1}{2} \right)! }{\left( n - 1 \right)!\sqrt{\pi}}u^{\frac{n}{2} - 1}e^{-\frac{u}{2}} & \textsf{ when $n$ is odd } \end{cases} \qquad \forall u \in \RR \end{equation}\]
- (\(F-\)distribution: \(F(m,n)\)) Let \[Z = \frac{U/n}{V/m}\] Show that \(Z\) has \(F(n, m)\) distribution, that is its probability density function for \(z > 0\) is given by, \[\begin{equation} \tag{2.8} f_{Z}(z) = \left( \frac{m}{n} \right)^{\frac{n}{2}}\frac{z^{\frac{n}{2}-1}}{\left( 1 + \frac{n}{m}z \right)^{\frac{n+m}{2}}}\frac{\Gamma\left( \frac{n+m}{2} \right)}{\Gamma\left( \frac{n}{2} \right)\Gamma\left( \frac{m}{2} \right)} \end{equation}\]
- (\(t_m\)-distribution) Let \(n=1\), \[W = \sqrt{Z} = \frac{X_1}{\sqrt{\frac{V}{m}}}\] Show that \(W\) has \(t_{m}\) distribution, that is its probability density function for \(w \in \RR\) is given by, \[\begin{equation} \tag{2.9} f_{W}(w) = \frac{\Gamma\left( \frac{m+1}{2} \right)}{\sqrt{m\pi}\Gamma\left( \frac{m}{2} \right)}\left( 1 + \frac{w^2}{m} \right)^{-\frac{m+1}{2}} \end{equation}\]
Exercise 2.11 Distinguishing between Student’s \(t-\)distribution and Normal distribution:
- Using
rnorm()
andrt()
generate \(100\) samples of \(N(0,1)\) and \(t_{25}\) distribution. Compare them using the inbuiltboxplot()
,qqnorm()
andqqline()
functions. - Using range of \([-4.4]\) (in same frame) plot the densities of \(N(0,1)\) and \(t_{k}\) distributions for \(k = 3, 33, 66\) and \(99\) using the
dnorm()
,dt()
andplot()
functions.